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IDENTIFICATION OF TWO-PLAYER SITUATIONS WHERE COOPERATION IS
PREFERABLE TO USE OF PERCENTILE GAME THEORY

John E. wWalsh* Grace J. Kelleher
Southern Methodist University University of Texas at Arlington

ABSTRACT

Considered is descrete two-person game theory where the players choose
their strategies separately and independently. A generally applicable
form of percentile game theory, using mixed strategies, has been developed
where player i can select a 1000{i percentile criterion and determine a
solution that is optimum to him for this criterion (i = 1, 2). For example,
median game theory occurs when the players decide to select ao; = ag = 1/2.
The only requirement for usability is that, separately, each player can
rank the outcomes for the game (pairs of payoffs, one to each player)
according to their desirability to him. When cooperation can occur, how-
ever, cooperative choice of strategies can have advantages compared to a
specified use, or class of uses, of percentile game theory (a use is defined
by the values of the two percentiles). This paper identifies situations
where cooperation is definitely preferable, for two types of cooperation.
No side payments are made for one type of cooperation. This type can
occur for any situation where percentile game theory is applicable. Side
payments can be made for the other type of cooperation. This type occurs
for situations where all payoffs can be expressed in a common unit and sat-
isfy arithmetical operations. Rules are given for deciding when cooper-
ation is definitely advantageous. Cooperation is always definitely prefer-

able when o, + o > 1.

* Research partially supported by Mobil Research and Development Cox-
poration. Also associated with ONR Contract N0014-68-A~0515 and NASA
Grant NGR 44-007-028.
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INTRODUCTION AND DISCUSSION

A generally applicable form of discrete two-person game theory based
on percentile considerations has been developed (ref. 1) fpr situations
where the players select their strategies separately and independently.
The payoffs can be of almost any nature and some of them may not even be
numerical. The pairs of payoffs, one to each player, that occur for the
various combinations of strategy choices are the possible outcomes for the
game. These outcomes, and the preferences of the players, are such that
separately each player is able to rank the outcomes according to their
relative desirability to him (including equal desirability as a possibility).
The two rankings do not necessarily bear any relationship to each other.

For percentile game theory, player i selects a percentile 100a/i
and wants to play the game optimally with respect to this percentile
(i =1,2). A largest level of desirability (which corresponds to one or
more outcomes Oi) occurs for the i-th player such that he can assure,
with probability at least @y that an outcome with at least this desirability
is obtained. This can be done simultaneously by both players. A method
for determining Oi and an optimum (mixed) strategy for each player is
given in ref. 1. The Appendix contains an outline of this method.
Incidentally, median game theory occurs for the special case where
o, = ag = 1/2.

It is to be noted that a ranking of the outcomes by a player not
only considers the payoffs to him but also the corresponding payoffs to

the other player. Thus, to the player doing the ranking, his ranking shows




the relative desirability of what can occur for the game, including what
occurs for the other player. Hence, for separate and independent choice
of strategies, and given values for o; and @z, the optimun solutions
developed in ref. 1 are as good as can be obtained on this basis.

The usefulness of the percentile approach (for specified o, and oy)
is not so evident when the players can cooperate in selection of strategies.
With cooperation, they may be able to obtain a game outcome that, to both,
is preferable to use of solutions that are optimum when there is no co-
operation. This paper is concerned with identification of cases where
suitable use of cooperation is definitely preferable to use of percentile
game theory. In making this identification, the preference rankings of the
game outcomes are considered to be known for both players. Of course, the
values of «o; and oz can affect this preference. 1In fact, cooperation is
found to always be definitely advantageous. when oy + og > 1. Some results
on cooperation have already been developed for oy = &g = 1/2 and are
given in ref. 2.

Two types of cooperation are considered. For the first type, no
payments from one player to the other are made (no side payments). Co-
operation of the first type can occur for virtually all situations (all
situations where percentile game theory is applicable).

Cooperation of the second type can involve side payments but imposes
a condition on the payoffs. That is, for side payments to be meaningful,
the totality of payoffs should be expressible in a common unit and satisfy
arithmetical operations (the operations of addition and subtraction, at the

least).




~4.

For both types of cooperation, a restriction is sometimes imposed
on the allowable freedom in ranking of the outcomes. This restriction
is oriented toward situations where the players behave in a competitive
manner. Specifically, for a given player, relative desirability is re-
quired to be a nondecreasing function of the desirability level of his
payoff when the desirability level of the payoff for the other player (to
the other player ) is nonincreasing. This restriction would seem accep-
table for any situation of practical interest where the players behave
competitively and, separately, each player is able to rank his payoffs
according to increasing desirability level (to him).

Let (pl, Pa) denote an overall "outcome" for the game where, when
side payments can be made, p; is the overall amount received by player i,
(i =1, 2). Thus, the values of p; and py are influenced by a payment made
from one player to the other. Also, let (pl(g), pa(g)> denote an actual
outcome of the game, as determined by the payoff matrices. Only the
Gpl(g)’ Pa(g)) are compared for the first type of cooperation. All (pl, Pa)
such that p; + py equals pl(g) + pa(g), for some game outcome, are compared
( and can possibly occur) for the second type of cooperation. The
(pl(g), pa(g)> are, of course, included in the totality of the (pl, Pa)'

Cooperation is considered to be definitely advantageous, compared
to optimum use of percentile game theory (with given o,, ay), when both
players can gain by agreeing on an achievable éﬁ: p=>. That is, for the
first type of cooperation, they agree to select strategies so that a
determined game outcome is obtained. For the second type of cooperation,
the agree to choose strategies and make side payments so that a determined

overall outcome occurs.
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A rule for deciding when cooperation is definitely advantageous is
given in the next section. Some implications of this rule, for competitive

games and for games in general, are considered in the final section.

GENERAL RULE

Let the totality of game outcomes<p1(g), pa(g)>be ranked according

to increasing desirability separately by each player. There is a smallest
subset Si(ai) such that all other game outcomes are less desirable to
player i than those of this subset and also an outcome of this subset can
be assured with probability at least ai by player i, (i = 1, 2). Statement
of a method that can be used to determine Si(di)is given in ref. 1. An
outline of this method occurs in the Appendix. It is to be noted that
Sl(l/2) and S,(l/2) can differ slightly from the subsets SI and SII of
ref. 2.

The subsets S; (#;) and S;(wg) provide the basis for a general rule that
can be used to decide when cooperation is definitely preferable to percentile
game theory (with o; and oy specified).

General Rule: Suitable use of cooperation is definitely

preferable for both players when an achievable outcome

(91: Pa) occurs that is at least as desirable to player

1 as one or more of the game outcomes of Sl(al) and

also is at least as desirable to player 2 as one or more

of the game outcomes of Sg(cg) .
This rule follows from the consideration that an achievable (overall)
outcome with at least the minimum level of desirability for both S; (o)

and Sg (o) can be obtained with certainty. For player i, optimum use of




the percentile approach only assures that an outcome with desirability
level at least the minimum for Si(di) is obtained with probability at
least @, (i=1, 2).

The achievable ( Py Pa) for the first type of cooperation are the
(pl(g), pa(g)). All (pl, p=> that satisfy p, + pg = pl(g) + pa(g), for
some game outcome, are achievable for the second type of cooperation.

Suitable use of cooperation is definitely advantages, for both types
of cooperation, when the same game outcome occurs in both S, (¥;) and Sy (@g).
This always happens, as shown in the next section, when o; + ag > 1.
However, Sl(al) and Sa(aa) need not have any game outcomes in common when
a; + oz < 1. Of course, the number of outcomes in Si«yi) is a nondecreas-
ing function of @, SO situations can occur where cooperation is not defi-
nitely preferable for given @y, &4 but is definitely preferable for suffi-
cient increase in o; and/or @; (even though a1 + g < 1 in all cases).
Also, the minimum level of desirability for outcomes of Siayi) is a non-
increasing function of o, and situations can occur where the players do not
want to use o; and oy values which result in o; + ag > 1.

A game outcome that is common to both S; (w;) and Sg(wy) must occur if
the first type of cooperation is to be definitely preferable. There is,
however, a broad class of situations where the second type of cooperation
is preferable, even though a; + oy < 1. Some consideration of situations

where the second type is preferable occurs in the next section.

IMPLICATIONS OF RULE

First, consider verification of the statement that cooperation is

always definitely preferable when o; + ag > 1. This follows from
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THEOREM 1. 1If S, (21) and S5 (@;) have no game outcomes in common,
then a; + oy < 1.

PROOF: An outcome of Si(ai) can be assured with probability at

least di by player i, (i = 1, 2). This implies that the complement of
S; (@1) in the totality of game outcomes, denoted by Ei(d1); can be assured
by player 2 with probability at most 1 - a;. However, g;(al) contains
Sg (g), which implies that 1 - o) 2 og, or oy + ¥g < 1.
This theorem holds, in particular, when @; and o, are attainable values

o) . . .
(ref. 1). A value ai( ) is attainable for ai if player i cannot assure an

outcome of Si(ai(O)) with probability greater than ai(O). When a specified
value for o, is not attainable, the value actually used for o, is the
smallest of the attainable values that exceeds the specified value. It
is advisable to use attainable values for oy and @g. Then, a true situa-
tion of al(O) + aa(o) > 1 does not occur when ow; + oz < 1 for the specified
values.

Next, consider the advantages of cooperation for games that are
"competitive." Here, a game is considered to be competitive if and only
if the totality of game outcomes can be arranged in a sequence so that the
payoffs for player 1 have nondecreasing desirability (to him) and also the
payoffs for player 2 have nonincreasing desirabiltiy level (to him). This
generalizes the concept of competitive games given in ref. 3 for the case
of payoffs that are numbers.

For a competitive game and the restriction imposed for compteitive

behavior of the players, S, (@) and S; (oy) have no outcomes in common when

@, + a5 <1l for attainable values. This follows from




o o
THEOREM 2. Let dl( ) and aa( ) be attainable values for &; and ay,,

respectively. When the restriction for competitive behavior holds, the

game is competitive, and dl(o) + aa(o) < 1, then the subsets Sl(al(o))and

(o)

o . .
Sg (ag ') are mutually exclusive and there is at least one game outcome

that does not belong to either of them.

PROOF: If this were not true, the restriction on ranking outcomes due

to the competitive behavior would imply that the union of s, (al(O)) and

(o)

Sg (aa(o)) is the totality of the game outcomes. Then, S; (%
(o) (o)

) contains

E; % ). Also, 1 - m is an attainable value for oy, since player 2

can assure an outcome of Ea (al(o)) with probability at least l—al(o)

(o)

but
not in excess of 1 - o (because player 1 can assure an outcome of

S, (al(o)) with probability at least al(o) but not in excess of al(O)).

( (o)

This, combined with the relationship between Sg (og o))and E; (g ),

implies that aa(o) 21 - al(o), or 01(0) + aa(o)

= 1, a contradiction.

Thus, for competitive behavior, a competitive game, and use of
attainable @y the subsets S, (v;) and Sy (03) necessarily have at least
one outcome in common when o; + o > 1 and necessarily are mutually ex-
clusive when oy + @3 < 1. There may, or may not, be any outcomes in
common when oy + Og = 1.

Occurrence of a common outcome for S1(a1) and Sa(aa) is not necessary
for definite preference of the second type of cooperation. For example,
cooperation often happens to be preferable in the somewhat common situation
where an increase of zeroc or more in the payoff received by a player, com-

bined with addition of at most this amount (negative amounts possible) to

the payoff for the other player, yields another outcome that is at least




s .

as desirable to him. Here, the payoffs are expressed in the same unit
and justification for the preceding assertion follows from

THEOREM 3. Suppose that, for any outcome (pl(g), pa(g)>, a modifi-

(9) (9)

+ hy, pg

cation (pl + ha) ;, to some achievable outcome, is as least

as desirable to player i as (91 (g), P3 (g)) when hi 2 0 and the other h

is at most equal to hi’ (i =1, 2). Then, if there exists an outcome

(pl', pa') of S; (@), an_outcome <P1") p,") of Sy (xg), and a game outcome
(pl'"3 Pa'") such that pg' -~ pg" 2 p;' - p;" and

p;'"' + pp'' 2 max (pl' + pg', 1" + Pa“) , the second type of cooperation

is definitely advantageous.

PROOF: Let p,'" and py' be expressed in the form

"™ =py' +a=p" +b, pg'" =pg' +A =py" + B.
The conditions of the theorem imply that
a+b20, A+B20, B-A+a-bzo.
Suppose that the players use (pl'“, Pa'") and that player 2 makes a side

payment of C = (b + B - a — A)/4 to player 1. The result is

(pl'" +C, pg" - C) = [%1' + 3a +b+B=-2A)/4, pg' + Bb-B +a +Aa)/4,
with a nonnegative amount added to p;' and at most this amount added to B
Pa', since

S3a+b+B~A23a+b+b~-a=2(@+b)=2o0,

3a +b+B~A) - B3b~-B+a+A)=2(B-A+a-Db)=o.
Likewise, -
(pl"' + C, pg" - C) = [;1" + 3A +b +B=-a)/4, pg" + BB~-Db +a + A)/45,

where a nonegative amount is added to pg" and at most this amount is added

to p,". Thus, from the supposition of the theorem, the achievable outcome
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(pl"' + C, pg" - C) is at least as desirable to player 1 as (pl', pa‘)

of S; (@;) and as least as desirable to player 2 as (P1": Pa") of Sz (ag).
APPENDIX

The same results are applicable to each player and are stated for
player i. Here the players select strategies separately and independently,
and the only outcomes considered are game outcomes. A way of determining
the largest level of desirability (corresponds to one or more ocutcomes Oi)
that player i can assure with probability at least di is outlined. Then,
a method for determining an optimum strategy for player i is described.
These procedures are based on a marking of the payoff positions in the
matrix for player i. A more detailed statement of these methods is
given in ref. 1.

First, mark the position(s) in the payoff matrix for player i of
the outcome(s) with the highest level of desirability to him. Next, also
mark the position(s) of the outcome(s) with the next to highest level of
desirability. Continue this marking,'according to decreasing level of
desirability, until the first time that player i can assure the occurrence
of an outcome in the marked set with probability at least ai. The last
(and lowest) level desirability for which a marking ultimately occurred
is the highest level that can be assured by player i with probability at
least di’ with oi being the outcome (s) marked last. The set Si(ai) con-
sists of the outcomes whose desirability level, to player i, is at least

as great as the level for Oi'
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The method for determining whether a set of marked outcomes can be
assured with probability at least ai consists in first replacing all of
their positions (marked) in the matrix for player i by unity and all other
pqsitions by zero. The resulting matrix of ones and zeroes is considered
to be for player i in a zero-sum game with an expected-value basis.

Player i can assure an outcome of the marked set with probability at least
@y if and only if the value of this game, for him, is at least a, -

Now, consider determination of an optimum strategy for player i.

Use the matrix marking that, ultimately, resulted in the smallest marked
set (according to the marking procedure) such that an outcome of this set
can be assured by player i with probability at least ai. Replace the
marked positions by unity and the others by zero. Treat the resulting
matrix as that for player i in a zero-sum game with an expected-value
basis. An optimum strategy for player i in this game is ai—optimum for
him.
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